Characterization of [1]Benzothieno[3,2-b]benzothiophene (BTBT) Derivatives with End-Capping Groups as Solution-Processable Organic Semiconductors for Organic Field-Effect Transistors

نویسندگان

چکیده

Solution-processable [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives with various end-capping groups, 2-(phenylethynyl)benzo[b]benzo[4,5]thieno[2,3-d]thiophene (Compound 1), 2-octyl-7-(5-(phenylethynyl)thiophen-2-yl)benzo[b]benzo[4,5]thieno[2,3-d]thiophene 2), and triisopropyl((5-(7-octylbenzo[b]benzo[4,5]thieno[2,3-d]thiophen-2-yl)thiophen-2-yl)ethynyl)silane 3), have been synthesized characterized as active layers for organic field-effect transistors (OFETs). Thermal, optical, electrochemical properties of the newly compounds were using thermogravimetric analysis (TGA), a differential scanning calorimeter (DSC), UV–vis spectroscopy, cyclic voltammetry (CV). Thin films each compound formed solution-shearing method thin film surface morphology texture corresponding atomic force microscopy (AFM) θ–2θ X-ray diffraction (XRD). All semiconductors exhibited p-channel characteristics in ambient Compound 1 showed highest electrical performance carrier mobility ~0.03 cm2/Vs current on/off ratio ~106.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Organic semiconductors for organic field-effect transistors.

The advantages of organic field-effect transistors (OFETs), such as low cost, flexibility and large-area fabrication, have recently attracted much attention due to their electronic applications. Practical transistors require high mobility, large on/off ratio, low threshold voltage and high stability. Development of new organic semiconductors is key to achieving these parameters. Recently, organ...

متن کامل

Solution processable multi-channel ZnO nanowire field-effect transistors with organic gate dielectric.

The present work focuses on nanowire (NW) applications as semiconducting elements in solution processable field-effect transistors (FETs) targeting large-area low-cost electronics. We address one of the main challenges related to NW deposition and alignment by using dielectrophoresis (DEP) to select multiple ZnO nanowires with the correct length, and to attract, orientate and position them in p...

متن کامل

Novel butterfly pyrene-based organic semiconductors for field effect transistors.

Novel butterfly pyrene derivatives functionalized with trifluoromethylphenyl and thienyl aromatic groups in the 1-, 3-, 6- and 8-positions of pyrene cores and have been synthesized by Suzuki coupling reactions, and their crystal structures, optical and electrochemical properties investigated; additionally, the field effect transistor using as the active material exhibited a p-type performance.

متن کامل

Solution Processable Nanowire Field-Effect Transistors

Hybrid field-effect-transistors (FETs) with germanium nanowire (NW) arrays and organic gate dielectric are presented. The nanowire deposition steps are fully compatible with printed electronics route. NW FETs demonstrate good performance with On/Off ratios of ~10 and hole mobilities of ~13 cm/Vs in both nitrogen and air atmosphere. These results suggest that the hybrid nanowire FETs could be us...

متن کامل

Easily processable phenylene-thiophene-based organic field-effect transistors and solution-fabricated nonvolatile transistor memory elements.

The synthesis of a new series of mixed phenylene-thiophene oligomers is reported; 2,5-bis(4-n-hexylphenyl)thiophene (dH-PTP, 1), 5,5'-bis(4-n-hexylphenyl)-2,2'-bithiophene (dH-PTTP, 2), 5,5' '-bis(4-n-hexylphenyl)-2,2':5',2' '-terthiophene (dH-PT(3)P, 3), 5,5' "-bis(4-n-hexylphenyl)-2,2':5',2' ':5' ',2' "-quaterthiophene (dH-PT(4)P, 4), 1,4-bis[5-(4-n-hexylphenyl)-2-thienyl]benzene (dH-PTPTP, 5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Coatings

سال: 2023

ISSN: ['2079-6412']

DOI: https://doi.org/10.3390/coatings13010181